THE CHANGE OF UNKNOWN CONSTANTS IN SEPARABLE DIFFERENTIAL EQUATIONS

Example 1. Find the general solution to

$$
\begin{equation*}
\frac{d T}{d t}=-k\left(T-T_{m}\right) . \tag{1}
\end{equation*}
$$

Solution. We first separate the variables and get

$$
\frac{d T}{T-T_{m}}=-k d t \Longrightarrow \int \frac{d T}{T-T_{m}}+C_{2}=\int-k d t+C_{1} .
$$

Here C_{1}, C_{2} are two arbitrary constants. This is equivalent to

$$
\begin{equation*}
\int \frac{d T}{T-T_{m}}=\int-k d t+C_{1}-C_{2} \tag{2}
\end{equation*}
$$

Since C_{1}, C_{2} can take any value as we want, it is easy to see that the value of $C_{1}-C_{2}$ is also arbitrary. So for notational brevity, we can replace $C_{1}-C_{2}$ by one unknown constant, say C_{0}, that is we set the notation

$$
C_{0}=C_{1}-2 .
$$

So (2) becomes

$$
\int \frac{d T}{T-T_{m}}=\int-k d t+C_{0}
$$

Solving it, we obtain

$$
\begin{equation*}
T(t)= \pm e^{C_{0}} e^{-k t}+T_{m} . \tag{3}
\end{equation*}
$$

Let us look at the expression $e^{C_{0}}$. The range of e^{x} is $(0, \infty)$. Since C_{0} is arbitrary, $e^{C_{0}}$ can take any positive value, and thus $\pm e^{C_{0}}$ can be any NON-ZERO number. As before, we can simplify our notation by putting

$$
C_{3}= \pm e^{C_{0}}
$$

and then (3) becomes

$$
\begin{equation*}
T(t)=C_{3} e^{-k t}+T_{m}, \quad C_{3} \neq 0 . \tag{4}
\end{equation*}
$$

Note that by the above argument, $C_{3}= \pm e^{C_{0}}$ cannot be zero, as the exponential function cannot take value 0 .

But if we actually set $C_{3}=0$ in (4), we will get

$$
T(t) \equiv T_{m} .
$$

Let us verify if this is a solution to (1). Indeed, $\frac{d T}{d t} \equiv 0$ as $T(t) \equiv T_{m}$ is a constant function. Meanwhile, $-k\left(T-T_{m}\right)=-k\left(T_{m}-T_{m}\right)=0 . T(t) \equiv T_{m}$ is actually a solution to (1).

Thus it is in fact admissible to take $C_{3}=0$ in (4).

Therefore, the general solution to (1) is

$$
T(t)=C_{3} e^{-k t}+T_{m}, \quad C_{3} \text { arbitrary constant. }
$$

Remark 2.

- The rigorous argument to show that the constant C_{3} can actually take value 0 is not required for this course. So you can always omit this step in your computations and assume C_{3} is arbitrary.
- Students need to be cautious while combining different unknown constants. For example, in the general solution to the falling object problem

$$
y(t)=\frac{1}{2} g t^{2}+C_{1} t+C_{2},
$$

the constants C_{1}, C_{2} cannot be combined into one, since both

$$
C_{1} t
$$

and

$$
C_{2}
$$

are different from the polynomial

$$
C_{1} t+C_{2} .
$$

However, if we have an expression

$$
C_{1} t+C_{2}+C_{3} t+C_{4},
$$

we can set

$$
C_{5}=C_{1}+C_{3}, \quad C_{6}=C_{2}+C_{4},
$$

and then reduce the original expression to

$$
C_{5} t+C_{6} .
$$

- While setting $C_{3}= \pm e^{C_{0}}$ to abbreviate the notations, one can be flexible with the choice of notations. For example, to abbreviate the expression $\pm e^{C}$, we can usually write

$$
C= \pm e^{C} .
$$

It might be confusing to use the same notation to replace an old one. But you should get used to this convention, because by following this convenient we can avoid keeping tracking of the subscripts of the unknown constants.

